EQUILIBRIUM NH-ACIDITY OF POLYFLUORINATED ARYLAMINES AND BENZANILIDES

V.M. Vlaso, G.G. Yakobson

Institute of Organic Chemistry, 630090, Novosibirsk (USSR)

M.I. Terekhova, E.S. Petrov, A.I. Shatenstein, L.Ya. Karpov

Physico-Chemical Institute, Moscow (USSR)

Equilibrium NH-acidity of the range of polyfluoroaromatic amines and benzanilides containing Ar_F -group (C_8F_5 , 4- C_5F_4N) on the nitrogen atom has been established in relation to 9phenylfluorene (pk 18.5) by overmetallation method in dimethyl sulfoxide (cation K^{\dagger}). Acidity of para-substituted NH-acids of the type $p-XC_6F_4NHC_6F_5$ and $p-XC_6F_4NHC(0)Ph$ (X = Me_2N , Me0, Me, H, F,Cl,Br,CF_q) has been determined in DMSO. From these data Hammet correlations for these series have been found. Examination of pK values for investigated compounds and respective non-fluorinated NH-acids shows that acidifying effect (ApK) of $C_{\rm g}F_{\rm g}$ -group to neighboring N-H-bond are more that of Phgroup from 6,5 to 7,5 pK units. The same difference of acidifying effects of $C_{\rm K} F_{\rm S}$ - and Ph-groups have been found in CHacids (from 5 to 6 pK units from the results of pK s in dimethoxyethane). This is attributed to the increase of inductive influence of $C_{\overline{h}}F_{\overline{s}}$ -group on the acidity both CH- and NH-acids.

The pK -6 correlations

Series	Equation
p-XC ₆ F ₄ NHC ₆ F ₅ p-XC ₆ F ₄ NHC(0)C ₆ H ₅	pK = -3.456_{p}^{-} + 12.6 r -0.972, s 0.33, n 8 pK = -2.926_{p}^{-} + 13.6
	r -0.966, s 0.25, n 6

The pK values of polyfluorinated arylamines and benzanilides in DMSO (cation K^+) relative to 9-phenylfluorene(pK 18.5)

Compound	рК	
C ₆ F ₅ NH ₂	23.1	
4-NH ₂ C ₅ F ₄ N	19.2	
C _B F ₅ NHPh	19.2	
4-Me ₂ NC ₆ F ₆ F ₄ NHC ₆ F ₅	13.6	
4-MeC ₆ F ₄ NHC ₆ F ₅	13.3	
4-HC_F_NHC_F_	12.8	
C _E F ₅ NHC _E F ₅	12.6	
4-Brc ₆ F ₄ NHC ₆ F ₅	12.2	
4-C1C6F4NHC6F5	12,0	
C ₆ F ₅ NHC ₁₀ F ₇ ~	11.8	
4-CF3C6F4NHC6F5	10.6	
4-NCC ₆ F ₄ NHC ₆ F ₅	9.1	
4-MeOC ₆ F ₄ NHC(0)Ph	14.1	
4-MeC ₆ F ₄ NHC(0)Ph	14.2	
4-HC _B F ₄ NHC(0)Ph	13.6	
C ₆ F ₅ NHC(0)Ph	13.0	
4-CF ₃ C ₆ F ₄ NHC(0)Ph	11.8	
C ₆ F ₅ NHC(0)C ₆ F ₅	10.8	